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Abstract. We have studied structural, thermodynamic, elastic, and electronic properties of cubic IrO2

polymorph via ab initio calculations within the LDA and GGA approximations. Basic physical proper-
ties, such as lattice constant, bulk modulus, second-order elastic constants (Cij), and the electronic band
structures are calculated, and compared with available experimental values. We have, also, predicted the
Young’s modulus, Poison’s ratio (ν), Anisotropy factor (A), sound velocities, and Debye temperature.

PACS. 62.20.-x Mechanical properties of solids – 62.20.Dc Elasticity, elastic constants – 71.22.+i Elec-
tronic structure of liquid metals and semiconductors and their alloys

1 Introduction

Due to availability of high-pressure experimental devices,
such as diamond anvil cells, high-pressure polymorphs
have become an attractive research area, especially in solid
state physics, chemistry, and geophysics. Meanwhile there
has been considerable interest in the high pressure be-
haviour of metal dioxides, such as IrO2 due to their at-
tractive electrical, optical, and electrochemical properties.
IrO2 crystallizes in the tetragonal rutile structure in ambi-
ent conditions, and its low pressure polymorphs are exten-
sively used for electrochromic displays [1], pH sensors [2],
electrode materials in advanced memory technologies [3],
and high rate-high charge capacitors [4] other application
areas are given by Chen et al. in a recent review article [5]
and references therein.

The first theoretical study of the rutile phase of IrO2

was performed by Matthesis [6] in a non-self consistent
calculation using the linear combination of atomic orbitals
method to fit augmented–plane waves (APW LCAO). Xu
et al. [7] investigated the electronic and optical proper-
ties of the same compound using self-consistent calcu-
lations based on the linear muffin tin orbitals (LMTO)
method and atomic sphere approximation (ASA). More
recently, de Almeida and Ahuja [8] studied the electronic
and optical properties of RuO2 and IrO2 in rutile struc-
ture using the full-potential linearized augmented plane
wave method. Tse et al. [9] studied the elastic properties
of RuO2 in three different phases (rutile, fluorite, pyrite-
type) using ab initio methods implemented in Wien2k and
Vasp.

Ono et al. [10] have recently synthesized and analyzed
the pyrite-type-structured phase of IrO2 with Pa-3 space
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group symmetry at high-pressure, using a laser-heated di-
amond anvil cell and synchrotron X-ray diffraction. The
primary difference between the fluorite- and pyrite-type
structures is the different positions of the oxygen atoms
in each structure. In the case of the fluorite-type struc-
ture, the oxygen atoms are located at u = 0 : 25 in the 8c
Wyckoff position with space group Fm-3m, while in the
case of the pyrite-type structure, the oxygen atoms are
situated at u = 0 : 34 in the 8c Wyckoff position with
space group Pa-3 [11].

Although a few theoretical studies exist on the rutile
structure (D4h) of IrO2, to the best of our knowledge,
there is no other theoretical study on the pyrite-type phase
of IrO2. Therefore, the main purpose of this paper is to
gain some basic theoretical information on this phase. In
particular, we have focused our attention on the struc-
tural, elastic, electronic, and thermodynamical behaviours
of this phase at ambient conditions and higher pressures
as well. Some comparisons have been made with the re-
sults of only one experimental observation in [10] from
high- pressure X-ray diffraction experiment. Also we have
compared with the theoretical results of the other hard
material, RuO2 [9], with the same structure.

2 Method of calculation

The SIESTA (The Spanish Initiative for Electronic Sim-
ulations with Thousands of Atoms) code [12–14] was uti-
lized in this study to calculate the energies and atomic
forces. It solves the quantum mechanical equation for the
electrons with the density functional approach in the local
density approximation (LDA) parameterized by Ceperley
and Alder [15] and generalized gradient approximation
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(GGA) based on Perdew et al. [16] for the electronic
exchange and correlation potential. The interactions be-
tween electrons and core ions are simulated with separable
Troullier–Martins [17] norm-conserving pseudopotentials.
The basis set is based on the finite range pseudoatomic
orbitals (PAOs) of the Sankey-Niklewsky type [18], gen-
eralized to include multiple-zeta decays. We have gener-
ated atomic pseudopotentials separately for both atoms,
Ir and O by using the 6s26p05d75f0 and 2s22p43d04f0

atomic configurations, respectively. The cut-off radii for
the present atomic pseudopotentials are taken as s: 2.60
p: 2.40 d: 2.40 f : 2.40 au for Ir, and 1.15 au for s, p, d
and f channels for O. Relativistic effects are taken into
account for Ir due to its heavy mass in the pseudopoten-
tial calculations. Also, all calculations have been carried
out at zero temperature, and the zero-point motion of the
nuclei is not taken into account in this work.

SIESTA calculates the self-consistent potential on a
grid in real space. The fineness of this grid is determined in
terms of an energy cut-off Ec in analogy to the energy cut-
off when the basis set involves plane waves. Here by using
a double-zeta plus polarization (DZP) orbitals basis and
the cut-off energies between 100 and 300 Ry with various
basis sets, we found its optimal values around 200 Ry.
Atoms were allowed to relax until atomic forces were less
than 0.04 eV Å−1. For the final computations, 196 k-points
were found to be adequate for obtaining total energy with
accuracy about 1 meV/atom.

3 Results and discussion

3.1 Structural and electronic properties

First, the equilibrium lattice parameter was computed by
minimizing the crystal total energy calculated for differ-
ent values of the lattice constant by means of Murnaghan’s
equation of state (eos) [19] as in Figure 1. The bulk mod-
ulus, and its pressure derivative have also been estimated,
based on the same Murnaghan equation of state, and the
results are given in Table 1 along with the experimental
values. The calculated lattice constant (a0) using the LDA
is in excellent agreement with the experimental value [10],
but the same value obtained from GGA is about 5% higher
than the experimental one. The LDA generally underesti-
mates the lattice constant while the GGA overestimates
the lattice constants when compared with experiment.
The present values of bulk modulus obtained from LDA
and GGA are about 10% (higher) and 10% (lower) than
the experimental value [6], respectively. Because the cal-
culation of equation of state (eos) is an essential step to
examine the accuracy of a theoretical calculation, the vari-
ation in volume as a function of pressure is compared with
experimental values of Ono et al. [10] in Figure 2. As can
be seen, the predicted eos using LDA exactly follows the
experimental eos.

Although it is not our main intention here to make de-
tailed band-structure calculations, we have predicted the
band structures for cubic IrO2 polymorph along the high

Fig. 1. Energy versus volume curves of the cubic IrO2 poly-
morph.

Table 1. Calculated equilibrium lattice constant (a0), bulk
modulus (B), and the pressure derivative of bulk modulus (B′),
together with the experimental value, for the cubic IrO2 poly-
morph.

Material Reference a0 (Å) B (GPa) B
′

IrO2 Present(LDA) 4.86 332.74 4.80
Present(GGA) 4.99 269.10 5.07
Experimentala 4.87 306(±6) 4.00

a Reference [10].

symmetry directions from the calculated equilibrium lat-
tice constant as shown in Figure 3. To see the details of the
bands from Ir-5d and O-2p states, the valence bands be-
tween –22 and –4 eV in energies are not seen in Figure 3.
It can be seen from Figure 3 that this structure shows
a metallic character (no band gap). As we stated in the
introduction band structure calculations have only been
performed previously [6–8] on the rutile structure of IrO2.
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Fig. 2. Pressure versus volume curves of the cubic IrO2 poly-
morph.

Fig. 3. Calculated band structures of the cubic IrO2 poly-
morph. The position of the Fermi level is at 0 eV.

The present ab initio results are qualitatively similar to
those of Tse et al. [9] for the pyrite-type cubic phase of
RuO2 using first principles methods.

The total and partial density of states (DOS and
PDOS) corresponding to the band structures shown in
Figure 3 is also indicated in Figure 4 along with the Fermi
energy level. The position of the Fermi level is at 0 eV. In
this figure, the lowest valence bands occur between about
–22 and –20 eV and are essentially dominated by O-2s
states, with minor presence of Ir-5d states. The other va-
lence bands are essentially dominated by Ir-5d and O-2p
states. The 6s states of Ir atoms are also contributing
to the valence bands, but the values of densities of these
states are quite small compared to Ir-5d and O-2p. The
conduction band consists essentially of Ir-5d with a minor
presence of O-2p states.

Fig. 4. The calculated total DOS and atomic projected DOS
of the cubic IrO2 polymorph. The position of the Fermi level
is at 0 eV.

3.2 Elastic properties

The elastic constants of solids provide a link between the
mechanical and dynamical behaviour of crystals, and give
important information concerning the nature of the forces
operating in solids. In particular, they provide information
on the stability and stiffness of materials, and their ab ini-
tio calculation requires precise methods. Since the forces
and the elastic constants are functions of the first-order
and second-order derivatives of the potentials, their cal-
culation will provide a further check on the accuracy of the
calculation of forces in solids. The effect of pressure on the
elastic constants is essential, especially for understanding
interatomic interactions, mechanical stability, and phase
transition mechanisms. Here for calculating the elastic
constants (Cij), we have used the “volume–conserving”
technique [20–22] as we did recently for cadmium chalco-
genides [23]. The present elastic constant values for IrO2

are given in Table 2. It is seen from this table that the
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Table 2. Elastic constants (in GPa) for the cubic IrO2 poly-
morph.

Material Reference C11 C12 C44

IrO2 Present (LDA) 472.66 262.89 153.96
Present (GGA) 384.59 211.38 133.44
Average 428.63 237.14 143.70

RuO2 Theorya 450 189 147
(pyrite-type)

a Reference [9].

Fig. 5. The pressure dependence of Cij and bulk modulus for
the cubic IrO2 polymorph.

consistency of the present results with RuO2 is satisfac-
tory in general except C12 which is higher (about 15%)
than that of RuO2.

The traditional mechanical stability conditions in cu-
bic crystals on the elastic constants are given as C11 −
C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0, and
C12 < B < C11. Our results for elastic constants in Ta-
ble 2 obey these stability conditions.

We have also calculated the pressure dependency of
the second-order elastic constants (SOEC) for the cubic
IrO2 polymorph as seen in Figure 5. As expected, both C11

and C12 increase monotonically with pressure whereas the
slope for C44, relatively, is lower. Meanwhile, the predicted
pressure derivatives of elastic constants, ∂C11

∂P , ∂C12
∂P , and

∂C44
∂P for IrO2 in the pyrite phase are found to be 6.96,

5.03, and 0.26, respectively.
The Zener anisotropy factor A, Poisson’s ratio υ, and

Young’s modulus Y , which are the most interesting elastic
properties for applications, are also calculated in terms of
the computed data using the following relations [24]:

A =
2C44

C11 − C12
, (1)

υ =
1
2

[
(B − 2

3G)
(B + 1

3G)

]
, (2)

Table 3. The calculated Zener anisotropy factor (A), Poisson’s
ratio (υ), Young’s modulus (Y ), and shear modulus for the
cubic IrO2 polymorph.

Material Reference A υ Y (GPa) C
′

(GPa)
IrO2 Present (LDA) 1.47 0.32 349.77 129.42

Present (GGA) 1.54 0.31 295.54 110.02
Average 1.50 0.32 322.65 119.72

and
Y =

9GB

G + 3B
(3)

where G = (GV + GR)/2 is the isotropic shear modu-
lus, GV is Voigt’s shear modulus corresponding to the
upper bound of G values, and GR is Reuss’s shear modu-
lus corresponding to the lower bound of G values; they
can be written as GV = (C11 − C12 + 3C44)/5, and
5/GR = 4/(C11 − C12) + 3/C44. The calculated Zener
anisotropy factor (A), Poisson’s ratio (υ), Young’s mod-
ulus (Y ), and shear modulus (C′ = (C11 − C12+2C44)/4)
for the cubic IrO2 polymorph are given in Table 3.

The Debye temperature is known as an important fun-
damental parameter closely related to many physical prop-
erties such as specific heat and melting temperature. At
low temperatures the vibrational excitations arise solely
from acoustic vibrations. Hence, at low temperatures the
Debye temperature calculated from elastic constants is the
same as that determined from specific heat measurements.
We have calculated the Debye temperature, θD, from the
elastic constants data using the average sound velocity,
vm, by the following common relation given in [25]

θD =
�

k

[
3n

4π

(
NA ρ

M

)]1/3

vm (4)

where � is Planck’s constants, k is Boltzmann’s constant,
NA is Avogadro’s number, n is the number of atoms per
formula unit, M is the molecular mass per formula unit,
ρ(= M/V ) is the density, and vm is obtained from [26]

vm =
[
1
3

(
2
v3

t

+
1
v3

l

)]−1/3

(5)

where vl and vt, are the longitudinal and transverse elas-
tic wave velocities, respectively, which are obtained from
Navier’s equation [27],

vl =

√
3B + 4G

3ρ
(6)

and

vt =

√
G

ρ
. (7)

The calculated longitudinal, transverse, and average elas-
tic wave velocities for IrO2 are given in Table 4. Debye
temperature is estimated (average) to be 485 K. This value
for cubic IrO2 is higher (about 10%) than those obtained
for a constituent Ir atom (430 K).
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Table 4. The longitudinal, transverse, and average elastic
wave velocities, together with the Debye temperature, for the
cubic IrO2 polymorph.

Material Reference vl(m/s) vt(m/s) vm(m/s) θD(K)
IrO2 Present (LDA) 6272.9 3197.3 3582.6 501.70

Present (GGA) 5911.3 3060.1 3425.5 467.88
Average 6092.1 3128.7 3504.1 484.78

4 Summary and conclusion

In this work we report, for the first time, some theoretical
results on the structural, mechanical, elastic, electronic,
and thermodynamical properties for the pyrite-type phase
of IrO2 based on ab initio total energy calculations. Our
estimated lattice constant and the bulk modulus are in
agreement with room-temperature experimental values in
the limit of LDA and GGA. Unfortunately, for the other
properties computed in this work, there are no previous
calculations for comparison, so comparison can only be
made with similar compounds with the same structure.
Finally, we believe that more experimental and theoretical
work is required on the pyrite-type and the other high
pressure phases of IrO2 to clarify these properties in all
aspects.

This work is supported by Gazi University Research-Project
Unit under Project No: 05/2007-42.
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